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Radiative Transport in a Periodic Structure
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We derive radiative transport equations for solutions of a Schro� dinger equation
in a periodic structure with small random inhomogeneities. We use systemati-
cally the Wigner transform and the Bloch wave expansion. The streaming part
of the radiative transport equations is determined entirely by the Bloch spec-
trum, and the scattering part by the random fluctuations.

KEY WORDS: Radiative transport; waves in random media, Wigner dis-
tribution; semiclassical limits; Bloch waves.

1. INTRODUCTION

Radiative transport equations describe propagation of the phase space
energy density of high frequency waves in a medium with weak random
impurities whose correlation length is comparable to the wave length *.(19)

The background medium may vary but only on scales that are much larger
than *. The phase space energy density has also been studied for a periodic
potential when the period is comparable to the wave length.(10, 15) It is then
found that the limiting phase space energy density satisfies a system of
decoupled Liouville equations with Hamiltonians given by the Bloch eigen-
values. Thus, we expect that the addition of small random fluctuations
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to the periodic structure will give rise to a system of coupled radiative
transport equations. This is what we show in this paper formally, using
asymptotic expansions. The rigorous proof of our final result remains an
open problem. Our main result is the system of the radiative transport
equations (3.15) that describes the propagation of phase space energy den-
sities _m(t, x, p) corresponding to various Bloch eigenvalues Em(p). We
derive here the transport equations only for the Schro� dinger equation.
However, the generalization to more general types of waves in a periodic
and random medium, like those described by hyperbolic systems con-
sidered in ref. 19, is straightforward. This results in the replacement of the
eigenvalues Em(p) in (3.15) by the corresponding Bloch eigenvalues for the
hyperbolic system under consideration. The paper is organized is follows.
First, we recall in Section 2 some properties of the Bloch eigenfunctions
and also give a formal derivation of the Liouville transport equations in the
absence of random inhomogeneities. These results were previously derived
rigorously in refs. 15 and 10, and we show the connection between our for-
malism and their results in Section 2.4. Section 3 is the main part of the
paper, where we derive the radiative transport equations in the presence of
a random potential.

2. WAVES IN A PERIODIC STRUCTURE

2.1. The Schro� dinger Equation

We give here a derivation of the Liouville equation for the phase space
energy density like the one in ref. 19. A different analysis is given in refs. 10
and 15. We then adapt the analysis of ref. 19 to the periodic-random case.

There is not a lot of mathematical work on the transport limit for the
Schro� dinger equation with random potential. We cite here the work of
Martin and Emch, (16) of Spohn, (20) of Dell'Antonio(3) and the recent exten-
sive study of Ho, Landau and Wilkins.(11) These papers established the
validity of the kinetic linear transport equation for a small time T>0. The
global validity of this limit was proved recently by Erdo� s and Yau in ref. 4.
They treat only spatially homogeneous problems but it is known how to
extend the analysis to the spatially inhomogeneous case (slow x-dependent
initial data and potential).(5) A really satisfactory mathematical treatment
of radiative transport asymptotics from random wave equations is lacking
at present.

It is convenient for us to use the usual Wigner distribution and not the
Wigner band-series as in refs. 10 and 15. The two formulations are,
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however, equivalent.(15) Let ,=(t, x) be the solution of the initial value
problem

i=
�,=

�t
+

=2

2
2,=&V \x

=+=0
(2.1)

,=(0, x)=,0
= (x)

The initial data ,0
= (x) is uniformly bounded in L2(Rd ): &,0

= &L2�C. We also
assume that it is =-oscillatory, that is, for any test function � # Cc(Rd ):

lim sup
= � 0

|
|k|�R�=

|�,=
0@(k)| 2 dk � 0 as R goes to +� (2.2)

Finally we assume that the family ,0
= is compact at infinity:

lim sup
= � 0

|
|x|�R

|,0
= (x)|2 dx � 0 as R goes to +� (2.3)

A sufficient condition for (2.2) is &{,0
= &�C�=. The case of =-independent

initial data was studied in ref. 2, where the Liouville equation for the wave
amplitudes (not energies) was derived.

The potential V(z) is periodic:

V(z+&)=V(z)

where vector & belongs to the period lattice L:

L={ :
d

j=1

njej } nj # Z= (2.4)

and e1 ,..., ed form basis of Rd with the dual basis e j defined by

(ej } ek)=2?$ jk

and the dual lattice L* defined by (2.4) with ej replaced by e j. We denote
by C the basic period cell of L and by B the Brillouin zone:

B=[k # Rd | k is closer to +=0 than any other point + # L*]

We define the Wigner distribution by

W=(t, x, k)=|
Rd

dy
(2?)d eik } y,=(t, x&=y) ,� =(t, x) (2.5)
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This definition is equivalent to its symmetric version

W� =(t, x, k)=|
Rd

dy
(2?)d eik } y,= \t, x&

=y
2 + ,� = \t, x+

=y
2 +

in the sense that W= and W� =(x, k) have the same weak limit as = � 0. (9) We
also have that

E=(t, x)=|,=(t, x)| 2=|
R d

dk W=(t, x, k)=|
R d

dk W� =(t, x, k)

The basic properties of the Wigner distributions are reviewed in detail in
refs. 10 and 18. In particular the weak limit W(t, x, k) of W=(t, x, k) exists
in S$(Rd_Rd ) and under assumptions (2.2) and (2.3) it captures correctly
the behavior of the energy E= :

lim
= � 0 | dx E=(t, x)=|| dx dk W(t, x, k)

We deduce from (2.1) and (2.5) the following evolution equation for
W=(t, x, k):

�W=

�t
+k } {xW=+

i=
2

2xW==
1
i=

:
+ # L*

ei+ } x�=V� (+)[W=(x, k&+)&W=(x, k)]

(2.6)

Here V� (+) are the periodic Fourier coefficients of V(y):

V� (+)=
1

|C | |C
dy e&i+ } yV(y) (2.7)

so that if V(y) is smooth we have

V(y)= :
+ # L*

e i+ } yV� (+)

and

1
|C |

:
+ # L*

ei+ } z= :
& # L

$(z&&) (2.8)

We introduce a multiple scales expansion for W= :

W=(t, x, k)=W0 \t, x,
x
=

, k++=W1 \t, x,
x
=

, k++ } } } (2.9)
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and assume that the leading term W0(t, x, z, k) is periodic in the fast
variable z=x�=. As usual, we replace then

{x � {x+
1
=

{z

in (2.6) and rewrite it as

�W=

�t
+k } _{x+

1
=

{z& W=+
i=
2 \{x+

1
=

{z+ } \{x+
1
=

{z+ W=

=
1
i=

:
+ # L*

ei+ } zV� (+)[W=(k&+)&W=(k)] (2.10)

We insert the perturbation expansion (2.9) into (2.10) and get at the order
=&1:

LW0=0 (2.11)

where the skew symmetric operator L is given by

Lf (z, k)=k } {z f +
i
2

2z f&
1
i

:
+ # L*

ei+ } zV� (+)[ f (z, k&+)& f (z, k)]

2.2. The Bloch Functions

The eigenfunctions of L are constructed as follows. Given p # Rd

consider the eigenvalue problem

&
1
2

2z9(z, p)+V(z) 9(z, p)=E(p) 9(z, p)

9(z+&, p)=eip } & 9(z, p), for all & # L (2.12)

�9
�zj

(z+&, p)=eip } & �9
�zj

(z), for all & # L

This problem has a complete orthonormal basis of eigenfunctions 9 :
m(z, p)

in L2(C ):

(9 :
m , 9 ;

j )=|
C

dz
|C |

9 :
m(z, p) 9� ;

j (z, p)=$mj$:; (2.13)

They are called the Bloch eigenfunctions, corresponding to the real eigen-
values Em(p) of multiplicity rm . Here :=1,..., rm labels eigenfunctions
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inside the eigenspace. The eigenvalues Em(p) are L*-periodic in p and have
constant finite multiplicity outside a closed subset Fm of p # Rd of measure
zero. They may be arranged E1(p)<E2(p)< } } } <Ej (p)< } } } with Ej (p)
� � as j � �, uniformly in p.(2, 13, 22) We consider momenta p outside the
set Fm .

The problem (2.12) may be rewritten in terms of periodic functions
8(z, p)=e&ip } z 9(z, p):

&
1
2

2z 8:
m+V(z) 8:

m&ip } {z8:
m+

|p|2

2
8:

m=Em(p) 8:
m(z, p) (2.14)

We differentiate (2.14) with respect to pj and take the scalar product of the
resulting equation and 8;

m to get

�Em

�pj
$:;= pj $:;&i \�8:

m

�zj
, 8;

m+
which may be rewritten as

�Em

�pj
$:;=i \9 :

m ,
�9 ;

m

�zj + (2.15)

There is no summation over m in (2.15).
Recall the Bloch transform of a function ,(x) # L2(Rd )

,� :
m(p)=|

R d
dz ,(z) 9� :

m(z, p)

It has the following properties:

(i) ,(x)=(1�|B| ) ��
m=1 �rm

:=1 �B dp ,� :
m(p) 9 :

m(x, p), x # Rd.

(ii) Let ,(x), '(x) # L2(Rd ), the Plancherel formula holds:

|
Rd

dx ,(x) '� (x)=
1

|B|
:

m, :
|

B
dp ,� :

m(p) '~ :
m(p)

(iii) The mapping , � ,� is one-to-one and onto, from L2(Rd ) �
�m L2(B).

We deduce from these properties the orthogonality relations:

$(y&x)=
1

|B|
:

m, :
|

B
dp 9 :

m(x, p) 9� :
m(y, p)
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and

$jm $:; $per(p&q)=
1

|B| |R d
dx 9 :

j (x, p) 9� ;
m(x, q) (2.16)

The periodic delta function $per in (2.16) is understood as follows: for any
function ,(p) # C�(B)

,(p)=|
B

dq ,(q) $per(p&q)

Given any vector k # Rd we may decompose it uniquely as

k=pk++k (2.17)

with pk # B and +k # L*. We then define the z-periodic functions
Q:;

mn(z, +, p), + # L*, p # B by

Q:;
mn(z, +, p)=|

C

dy
|C |

ei(p++) } y 9 :
m(z&y, p) 9� ;

n(z, p) (2.18)

Then a direct computation shows that

LQ:;
mn(z, +, p)=i(Em(p)&En(p)) Q:;

mn(z, +, p) (2.19)

with +=+k , p=pk , so Q:;
mn are eigenfunctions of L.

2.3. The Liouville Equations

Now (2.19) implies that, for any p, ker L is spanned by the functions
Q:;

mm , which we denote by Q:;
m (to indicate that there is no summation over m).

Then (2.11) implies that W0(t, x, z, k) may be written as

W0(t, x, z, k)=W0(t, x, z, p++)

= :
m, :, ;

_:;
m (t, x, p) Q:;

m (z, +, p), p # B, + # L* (2.20)

with +=+k , p=pk . This defines _m , which is scalar if the eigenvalue Em(p)
is simple, and is a matrix of size rm_rm if Em(p) has multiplicity rm>1. We
call _m the coherence matrices in analogy to the non-periodic case.(19) They
are defined inside the Brillouin zone p # B but it is convenient to extend
them as functions in Rd, L*-periodic in p.
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Next we look at =0 terms in (2.10). We get

�W0

�t
+k } {xW0+i {x } {zW0=&LW1 (2.21)

We now integrate both sides of (2.21) against Q� :;
j (z, +, p) over z in C and

sum over +. To evaluate the left side we note that we have after summing
over + using (2.8), and using (2.13) and a change of variables y � z&y:

:
+ # L*

|
C

dz
|C |

Q:$;$
m (z, +, p) Q� :;

j (z, +, p)

=|
C_C

dy dz
|C |2 9 :$

m(z, p) 9� ;$
m(y, p) 9� :

j (z, p) 9;
j (y, p)

=$mj $::$ $;;$ (2.22)

Further, using the change of variables and equations above and also (2.15),
we get

:
+ # L*

(( pl++ l) Q:$;$
m , Q:;

j )

= :
+ # L*

|
C3

dz dy1 dy2

|C |3 e i(p++) } (y1&y2)( pl++l)

_9 :$
m(z&y1 , p) 9� ;$

m(z, p) 9� :
j (z&y2 , p) 9 ;

j (z, p)

=
1
i |

C_C

dz dy
|C |2

�9 :$
m(y, p)
�yl

9� :
j (y, p) 9 ;

j (z, p) 9� ;$
m(z, p)

=
1
i

$mj $;;$ \�9 :$
m

�yl
, 9 :

j +=$mj $::$ $;;$

�Em

�pl
(2.23)

A similar calculation shows that the third term on the left vanishes:

:
+ # L*

\�Q:$;$
m

�zl
, Q:;

j +
=|

C_C

dz dy
|C |2

�9 :$
m(z&y, p)

�z l
9� :

j (z&y, p) 9 ;
j (x, p) 9� ;$

m(z, p)

+|
C_C

dz dy
|C | 2 9 :$

m(z&y, p) 9� :
j (z&y, p) 9;

j (x, p)
�9� ;$

m(z, p)
�z l

=&
1
i

$:; $;;$ $ jm
�Em

�pl
+

1
i

$:; $;;$ $jm
�Em

�pl
=0
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The right side of (2.21) integrated against Q� :;
j vanishes since L is skew

symmetric, and Q:;
j # ker L. Putting together (2.21), (2.22) and (2.23) we

obtain the Liouville equations for the coherence matrices _m :

�_m

�t
+{pEm } {x_m=0 (2.24)

The initial data for equations (2.24) is constructed as follows. Let W 0
=(x, k)

be the Wigner transform of the initial data ,0
= (x). Then _m(0, x, p) is given

by

_:;
m (0, x, p)= lim

= � 0
:

+ # L*

W 0
= (x, p++) Q� :;

j \x
=

, +, p+
with the limit understood in the weak sense.

2.4. The Wigner Band Series

The Liouville equations (2.24) were previously derived in refs. 15 and
10 in terms of the Wigner series defined by

w=(t, x, k)=
|C |

(2?)d :
& # L

eik } &,=(x&=&) ,� =(x)= :
+ # L*

W=(x, k++)

It was shown that the weak limit w(t, x, k) of w=(t, x, k) has the form

w(t, x, k)=:
j

wj (t, x, k)

Here wj is the limit Wigner series of the projection , j
= of the solution ,= of

the Schro� dinger equation on the Bloch spaces S =
j :

S=
j ={ f # L2(Rd ) : f (x)=:

:

1
|B| |B

dp
=3�2 f� :(p) 9 :

j \x
=

, p+=
Each projection wj evolves according to the Liouville equation (2.24). This
result may be related to our approach as follows. The Wigner distribution
W=(t, x, k) has the asymptotics

W=(t, x, p++)r :
m, :, ;

_:;
m (t, x, p) Q:;

m \x
=

, +, p+ (2.25)
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Then the weak limit of w= is given by

w(t, x, p)= :
m, :, ;

_:;
m (t, x, p) :

+ # L*
|

C

dz
|C |

Q:;
m (z, +, p)=:

m

Tr _m(t, x, p)

If we take the trace of (2.24) we get the transport equations for wm(t, x, p)
=Tr _m(t, x, p) obtained in refs. 15 and 10. However, the representation
(2.25) captures not only the weak limit of w= but also the oscillations of W=

on the fine scale. Moreover, the cross-polarization of various modes corre-
sponding to the same eigenvalue is also taken into account by the off-
diagonal terms in the coherence matrices. The oscillations of the spatial
energy density, which is the physically interesting quantity, are given by

E=(t, x, p)r :
m, :, ;

|
B

dp _:;
m (t, x, p) 9 :

m \x
=

, p+ 9� ;
m \x

=
, p+

( :
m

|
B

dp Tr _m(t, x, p) as = � 0

This information on the energy oscillations may be useful in numerical
simulations. We see that _::

m are phase space resolved energy densities of
different modes inside the Brillouin zone.

3. THE RANDOM PERTURBATION

3.1. Simple Eigenvalues

We assume first that the Bloch eigenvalues Em(p) have multiplicity one
for all p # B. This assumption is known to be true for the leading eigenvalue
when the Fourier transform (2.7) of the periodic potential V(y) is
negative.(1) In many physical problems the absence of level crossings
restricts our results to the lower part of the spectrum. We consider now
small random perturbations of the periodic problem (2.1) with randomness
being on the same scale as the periodic potential but weak:

i=
�,=

�t
+

=2

2
2,=&V \x

=+&- = N \x
=+=0

,=(0, x)=,0
= (x)

Here N(y) is a time independent mean zero spatially homogeneous random
process with covariance tensor R(x) defined by:

(N(y) N(y+x)) =R(x), (N� (p) N� (q)) =(2?)d R� (q) $(p+q) (3.1)
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Here ( } ) denotes the ensemble average and the Fourier transform N� (q) is

N� (q)=|
R d

dx e&iq } xN(x) (3.2)

The Wigner distribution W=(t, x, k) satisfies the evolution equation

�W=

�t
+k } {xW=+

i=
2

2xW=

=
1
i=

:
+ # L*

e i+ } x�=V� (+)[W=(k&+)&W=(k)]

+
1

i - = |
R d

dq
(2?)d eiq } x�=N� (q)[W=(k&q)&W=(k)]

Here V� (+) is the periodic Fourier transform (2.7) and N� (q) is the Fourier
transform (3.2) over Rd.

We consider the asymptotic expansion

W=(t, x, k)=W0 \t, x,
x
=

, k++- = W1 \t, x,
x
=

, k++=W2 \t, x,
x
=

, k++ } } }

with the leading order term W0 being deterministic. We introduce as before
the fast variable z=x�=, replace {x � {x+(1�=) {z and collect the powers
of =. The order =&1 gives as before

LW0=0

Thus we still have the decomposition (2.20):

W0(t, x, z, p++)=:
m

_m(t, x, p) Qm(z, +, p) (3.3)

with _m being scalar because the spectrum is simple. Recall that the func-
tions _m(t, x, p) are L*-periodic in p and the z-periodic functions Qm are
given by (2.18) with m=n. The order =&1�2 terms give

LW1=
1
i |

R d

dq
(2?)d eiq } zN� (q)[W0(z, k&q)&W0(z, k)] (3.4)

The distribution W1 need not be periodic in the fast variable z. Therefore
it may not be expanded in Qmn and we use the basis functions

Pmn(z, +, p, q)=|
C

dy
|C |

e i(p++) } y9m(z&y, p) 9� m(z, p+q) (3.5)
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defined for z # Rd and p, q # B, in place of the periodic functions
Qmn(z, +, p). The functions Pmn are quasi-periodic in z:

Pmn(z+&, +, p, q)=Pmn(z, +, p, q) e&i& } q

We use (2.16) and (2.8) to obtain the orthogonality relation for the func-
tions Pmn :

:
+ # L*

|
Rd

dz
|B|

Pmn(z, +, p, q) P� jl (z, +, p, q0)=$mj $nj $per(q&q0) (3.6)

The operator L acts on these functions as

LPmn=i(Em(p)&En(p+q)) Pmn(z, +, p, q)

which is the analog of (2.19) for the functions Qmn . Note that the integrand
in (3.5) is periodic in y so no boundary terms are produced by integration
by parts.

We decompose W1 in this basis as

W1(t, x, z, p++)= :
m, n

|
B

dq
|B|

'mn(t, x, p, q) Pmn(z, +, p, q) (3.7)

with z # Rd, p # B and + # L*. We insert (3.7) into (3.4), multiply (3.4) by
P� jl (z, +, p, q0), sum over + # L* and integrate over z # Rd. Then we get
using (3.6) on the left side

'jl (t, x, p, q0)= :
+ # L*

||
R 2d

dz dq e iq } zN� (q)
(2?)d

_
[W0(z, p++&q)&W0(z, p++)]

El (p+q0)&Ej (p)+i%
P� jl (z, +, p, q0) (3.8)

where % is the regularization parameter. We let % � 0 at the end. We insert
expression (3.3) for W0 and the definition (2.18) of Qm into (3.8). The
resulting expression may be simplified using (2.16) and (2.8):

'jl (t, x, p, q0)=
1

(2?)d :
+ # L*

N� (&+&q0) _ l (p+q0)
El (p+q0)&Ej (p)+i%

Alj (p+q0++, p)

&|
R d_R d

dz dq
(2?)d |B|

eiq } z N� (q) _ j (p) 9 l (z, p+q0) 9� j (z, p)
El (p+q0)&Ej (p)+i%

(3.9)
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Here the amplitude Alj (q, p) is given by

Alj (q, p)=|
C

dy
|C |

e&i(q&p) } y 9l (y, q) 9� j (y, p) (3.10)

The next order equation is

�W0

�t
+k } {xW0+i {z } {xW0+LW2

=
1
i |

R d

dq
(2?)d eiq } zN� (q)[W1(z, k&q)&W1(z, k)]

We multiply this equation by Q� j (z, +, p), integrate over z and sum over
+ # L*, and take average. Then as before the left side is

LHS=
�_j

�t
+{pEj } {x_ j (3.11)

The right side is

RHS=I1+I2 (3.12)

where

I1=
1
i

:
+ # L*

|
C

dz
|C | |Rd

dq eiq } z

(2?)d (N� (q) W1(p++&q) Q� j (z, +, p)) (3.13)

and

I2=&
1
i

:
+ # L*

|
C

dz
|C | |Rd

dq eiq } z

(2?)d (N� (q) W1(p++) Q� j (z, +, p))

We insert expression (3.7) for W1 into (3.13) to get

I1=
1
i

:
+ # L*

|
C

dz
|C | |Rd

dq
(2?)d |

B

dq0

|B|
(N� (q) Q� j (z, +, p)

_ :
m, n

'mn(p++&q, q0) Pmn(z, +, p&q, q0))

We may split I1=I11&I12 according to the two terms in (3.9). We insert
the first term in (3.9) into the expression for I11 and average using spatial
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homogeneity (3.1) of the random process N(z), orthogonality (2.13) of the
Bloch functions 9m(z, p) and also sum over + # L* using (2.8). Then we get

I11=
1
i

:
+ # L*

:
m

|
B

dq
|B| (2?)d

R� (q++) |Ajm(p, p&q&+)| 2 _j (p)
Ej (p)&Em(p&q)+i%

Here we have replaced integration over q # Rd by integration over B and
sum over + # L*. The second term I12 is evaluated similarly:

I12=
1
i

:
+ # L*

:
m

|
B

dq
|B| (2?)d

R� (q++) |Ajm(p, p&q&+)| 2 _m(p&q)
Ej (p)&Em(p&q)+i%

Thus we have

I1=
1
i

:
+ # L*

:
m

|
B

dq
|B| (2?)d

R� (q++) |Ajm(p, p&q&+)|2 [_j (p)&_m(p&q)]
Ej (p)&Em(p&q)+i%

(3.14)

One may verify that I2=I� 1 in (3.12). We insert then (3.14) into (3.12), take
the limit % � 0, make a change of variables q � p&q, and combine it with
(3.11) to get the system of radiative transport equations:

�_j

�t
+{pEj } {x_j=:

m
|

B

dq
|B|

Qjm(p, q)[_m(q)&_ j (p)] $(Ej (p)&Em(q))

(3.15)

The differential scattering cross-sections Qjm(p, q) are given by

Qjm(p, q)= :
+ # L*

1
(2?)d&1 R� (p&q++) |Ajm(p++, q)|2

This is the main result of this paper: we have derived a system of coupled
radiative transport equations for the phase space energy densities of the
Bloch modes. The transition probabilities Qjm(p, q) are real and symmetric
Qjm(p, q)=Qmj (q, p) as seen from the definition (3.10) of Aij (p, q). There-
fore the total energy is conserved:

E(t)=:
m

|
Rd

dx |
B

dp _m(t, x, p)=const

Transport equations like (3.15) are well known in the theory of resistance
of metals and alloys.(17) Their systematic derivation from the Schro� dinger
equation with a periodic and random potential (3.1) is new.
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APPENDIX. MULTIPLE EIGENVALUES

When eigenvalues Ej (p) are not simple, but their multiplicity is inde-
pendent of p, so that there are still no level crossings, the analysis in the
previous section can be extended to this case. This case is probably very
rare for the Schro� dinger equation but is important for other types of waves,
for instance, in symmetric hyperbolic systems. We present it here for the
sake of completeness. The result is as follows. Let the matrices T :;

jm(p, q),
:=1,..., rj , ;=1,..., rm , where rj and rm are the multiplicities of Ej and Em

be defined by

T :;
jm(p, q)=|

C

dz
(2?)(d&1)�2 |C |

ei(p&q) } z 9 ;
m(z, q) 9� :

j (z, p)

Then the coherence matrices _j (p) satisfy the system of radiative transport
equations

�_j

�t
+{pE j } {x_ j= :

+ # L*; m # N
|

B

dq
|B|

R� (p&q++) Tjm(p, q&+) _m(q)

_T*jm(p, q&+) $(Ej (p)&Em(q))&
i

2? |
B

dq R� (p&q++)
|B|

__Tjm(p, q&+) T*jm(p, q&+) _j (p)
Ej (p)&Em(q)+i0

&
_j (p) Tjm(p, q&+) T*jm(p, q&+)

Ej (p)&Em(q)&i0 &
These equations have the same structure as the radiative transport equa-
tions for polarized waves derived in ref. 19. The expression of the total
scattering cross-section as a principal value integral and not as a familiar
integral against $[Em(q)&Ej (p)] is known in transport theory for
polarized waves.(12, 6, 19) They reduce typically to the form common in
scalar transport equations under additional symmetries, like rotational
invariance of the original wave equations and the power spectrum tensor.
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